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Abstract 
 
We will use inelastic neutron scattering to examine the quantum rotational dynamics of 
methyl iodide (also known as iodomethane, CH3I), a textbook example of a symmetric 
quantum top.  The goal of this hands-on measurement is to gain an understanding and 
appreciation of the backscattering and filter analyzer measurement techniques, get 
practical experience in obtaining inelastic neutron scattering data, and reduce, analyze 
and interpret a set of these data.  
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Introduction 
 
Methyl iodide is a simple example of a quantum rigid rotor and, as a result, exhibits 
quantized rotational energy levels.  Such rotations take place primarily about the axis 
aligned with the I and C atoms (see figure 1) and can be measured directly with inelastic 
neutron scattering.  The rotation of the methyl group is detected via scattering of neutrons 
from the hydrogen atoms.  It turns out that hydrogen has an extremely large neutron 
scattering cross-section, dwarfing the cross-section of carbon by a factor of 15 and iodine 
by more than 20.  An experiment involving scattering from a hydrogenous material like a 
methyl group yields many scattering events in a short period of time, thus making it ideal 
to study here.  

 
Figure 1  Schematic of the CH3I molecule. 

 
In the solid phase, the CH3I molecule is not a free rotor but rather is confined in a 
potential well.  The existence and characteristics of the potential well are a consequence 
of the molecule’s local environment, and the motion of the molecule is a direct 
consequence of this confining potential.  Since inelastic neutron scattering probes the 
motion of the molecules (dominated by the H atoms in the molecules), then we should be 
able to extract information about the confining potential from the neutron scattering data.   

 
Figure 2 Schematic illustration of the single-particle picture of the the three types of methyl motion. 

 
This interesting molecular system exhibits dynamics on a number of energy scales, and 
we will be probing the extremely low-energy dynamics (µeV) using the cold neutron 

H 

I 

C

tunneling

libration

stochastic
reorientation

k
B
T



 3 

backscattering spectrometer and the intermediate energy dynamics (meV) using the 
thermal neutron filter analyzer spectrometer.  In a simple picture of solid methyl iodide, 
the methyl group can have three different types of motion as shown in figure 2.  At low 
temperature, the wavefunctions of the protons can overlap and the orientation changes by 
tunneling through the potential barrier.  The methyl group can also undergo torsional 
oscillation or libration.  Finally, if there is enough thermal energy in the solid, the methyl 
group can undergo stochastic reorientation, also known as jump diffusion. 
 
In these measurements we will explore the effects of temperature on the very low-energy 
tunneling transitions.  As will be discussed in the theory section, these are the result of 
splitting librational states.  This classically forbidden motion is akin to you walking 
unimpeded through one of the concrete shields surrounding the neutron guides.  From 
the tunneling measurements, we will be able to estimate the potential barrier height that 
the methyl group experiences, estimate the radius of the methyl group, and predict the 
librational transition and compare it to the measured quantity on the Filter Analyzer 
Spectrometer. 
 
At various points throughout the text we will pose a number of questions delimited from 
the rest of the text with boxes.  These are meant to arouse your curiosity (italicized) as 
well as ensure that you have learned some of the basic ideas and details of this 
measurement (not italicized).  Some of them can be answered based on information 
presented in this report while others you will have to find out from us.  We begin with the 
following question: 
 
Q:  Do you expect the transition energies associated with libration to be higher or 
lower than those associated with rotational tunneling? 
 
 
Sample and Sample Environment Details 
 
Methyl iodide is a liquid at room temperature and solidifies at –66.5oC.  A small amount 
of the liquid has been placed into an annular aluminum sample can at room temperature.  
The annular geometry was selected to minimize the amount of corrections necessary in 
the data reduction.  If the sample is too thick, then a significant number of the neutrons 
may get absorbed.  This self-shielding depends on the absorption cross-section of the 
sample as well as the geometry.  For an annular geometry where the neutron sees only a 
thin portion of the sample, the corrections are negligible.  Another concern when 
determining sample design is minimization of multiple scattering.  In an ideal neutron 
scattering measurement, we would like for the neutron to scatter once within the sample 
before reaching the detector.  In practice, the neutrons can undergo multiple scattering 
events within the sample and/or be absorbed by the sample, the number of such events 
increasing with the thickness of the sample illuminated by the beam.  One often used 
rule-of-thumb is to design a sample geometry where 90% of the incident neutrons are 
transmitted in the forward direction.  This is a good compromise between signal and the 
effects of multiple scattering.  Such a sample is usually referred to as a 10% scatterer.  
Using the known scattering and absorption cross-sections for CH3I and the geometry, one 
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can calculate the desired thickness.  For methyl iodide in an annular cell the approximate 
thickness for 90% transmission in the forward direction is around 0.13 mm.  The annular 
cell we are using provides a sample thickness of about 0.125 mm. 
 
Q: How many times does the beam go through the sample before reaching the 
detectors? 
 
The answer to the question posed above can have important consequences for your 
experiment.  If the beam passes through the sample twice (for instance) and the sample 
has an appreciable neutron absorption cross-section, then the intensity at the detectors 
will be lower than if the beam had only passed once through the sample.  Additionally, a 
beam which passes twice through a strongly scattering sample can produce an energy-
dependent background.  For more details on these points, see Appendix E. 
 
The sample can has been placed on the cold finger of a closed-cycle refrigerator capable 
of reaching a base temperature of 8 K.  The measurements performed here will span 8 K 
to 50 K. 
 
Spectrometer and Data Reduction Details: HFBS 
 
The HFBS spectrometer is configured in an inverse scattering geometry.  This means that 
the energy of the neutron incident on the sample is varied while the final energy of the 
neutrons reaching the detectors is fixed. 
 
A summary of the basic principle of operation of HFBS is outlined below: 
 
1. A “white” beam of neutrons back-reflects from the doppler monochromator thus 

selecting out particular neutron energies, Ei, dependent upon the speed of the 
monochromator when reflected.  While at rest, only neutrons with a wavelength 
of 6.27 Å back-reflect from the monochromator.  This is due to the lattice spacing 
of the Si hexagons that tile the surface of the monochromator support. 

2. The reflected neutrons scatter from the sample. 
3. Only neutrons with a particular scattered energy, Ef, reflect from the analyzer 

array into the detectors.  Identical Si hexagons comprise the analyzer system, thus 
the backscattered neutrons all have a wavelength of 6.27 Å.  The energy transfer 
to the sample is defined as E=Ei-Ef. 

4. Neutrons scattered from the sample in a particular direction back-reflect from 
particular analyzers in one of the 16 detectors.  This provides the scattering angle, 
2θ. 

 
Q: What is the energy range of the neutrons incident on the sample, Ei?  What is the 
fixed final energy of the neutrons reaching the detectors, Ef? 
 
Given the scattering angle, 2θ, and energy transfer, E, we may calculate the magnitude of 
the momentum transfer delivered to the sample, Q.  Kinematical arguments lead to the 
following relationship between 2θ, E, Ei, and Q:   
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where mn is the mass of the neutron and = is Planck's constant. 
 
The data acquisition system records the number of detector counts as a function of initial 
neutron velocity, vi, where vi is related to the instantaneous monochromator velocity, vm, 
and the Bragg velocity of the neutrons with wavelength 6.27 Å, vB, via vi=vB+vm.  The 
energy transfer to the sample, due to a Doppler shift of the neutron energies, is given by, 
 

2

B

m
B

B

m
B v

v
E

v
v

E2E 







+








= , (2) 

 
where EB is the Bragg energy of neutrons with wavelength 6.27 Å, is calculated and 
written to the raw data file.  Note that the motion of the monochromator is time-
dependent, allowing the variation of Ei necessary to an inverse geometry spectrometer.  
The raw data measured is recorded as N(2θj,Ek)=Njk, the number of neutrons detected in 
detector j (at scattering angle corresponding to 2θj) with an energy transfer to sample of 
Ek. 
 
The quantity which reflects the dynamics of the scattering system most directly is S(Q,E), 
the dynamic structure function.  What we measure, Njk, is closely related to the partial 

differential cross-section, 
dEd

d 2

Ω
σ .  This can be written in terms of the various instrument-

dependent parameters and the number of counts received in the detectors, 
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where 
 
η(Ef): efficiency of a 3He detector at the fixed final energy, Ef, of the 

spectrometer 
A: area of incident beam 
η(FC):  efficiency of beam monitor 
N(FC):  total number of counts received in the beam monitor 
γj:  efficiency correction factor for detector j 
ρN:  number density of scatterers in the sample 
V:  volume of sample illuminated by the beam 
∆E:  energy channel width 
∆Ωj:  solid angle subtended by detector  
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We can obtain the dynamic structure function [1], S(Q,E), using the first Born 
approximation (i.e. a single scattering event dominates the response of the scattering 
system) via 
 

dEd
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where  
 
σ:  scattering cross-section 
ki:  incident neutron wavevector 
kf:  final neutron wavevector 
 
Note that for a sample in thermal equilibrium, the detailed balance condition is satisfied, 
 

)E,Q(Se)E,Q(S kT
E

−
=− , (5) 

 
where E is the sample energy gain [1].  This condition is a way of saying that it is more 
likely that a sample will give energy to the neutron at high temperatures than at low 
temperatures. 
 
Spectrometer and Data Reduction Details: FANS 
 
The FANS spectrometer is also configured in an inverse scattering geometry.  In the 
particular instrument configuration for this measurement, the neutrons from the reactor 
are monochromated with a graphite monochromator.  The energy selected from the beam 
is determined by changing the monochromator angle with respect to the incident beam.  
This monochromatic beam then hits the sample and scatters into a low-bandpass filter 
comprised both of polycrystalline Be and graphite.  The filter analyzer is so-named 
because it only transmits scattered neutrons with a fixed final energy of less than 1.8 
meV.  Essentially, neutrons with wavelengths longer than the Bragg cutoff 2dmax (where 
dmax is the maximum interplanar spacing) of the filter material are transmitted with no 
attenuation due to Bragg scattering.  Thus the energy transfer to the sample can be 
determined by subtracting an average final energy of 1.2 meV from the monochromated 
incident energy. 
 
The utility of the filter analyzer method for our sample is that the quantity measured is 
approximately proportional to the density of vibrational (or librational) states.  As with 
many inelastic neutron scattering spectrometers, the quantity measured with FANS is the 

neutron partial differential cross-section, 
dEd

d 2

Ω
σ .  A number of important factors which 

are particularly relevant to our sample lead to this approximation.  These are: a) the 
molecules in the scattering system are isolated, b) the atoms in the molecules move 
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independently of atoms in other molecules (the "incoherent approximation"), and c) we 
are in the low temperature limit (kBT << =ω). 
 
 
Methyl Iodide Theory 
 
In a simplified picture of solid CH3I, an individual molecule can be viewed as having a 
fixed orientation [2].  This is equivalent to saying that the hydrogen atoms, i.e. protons, 
are on fixed labeled sites.  Since the protons are fermions (spin ½), there are three 
(energetically) equivalent orientations, 312,231,123 , known as pocket states. 

 
Figure 3 Simplified three-fold rotational potential for CH3I. 

 
This degeneracy can be conveniently written in terms of a three-fold potential which is 

expressed approximately as ( ) ( )φ−=φ 3cos1
2

V
V 3  where the angle φ describes the 

angular orientation of the molecule about an axis parallel to the I-C axis (figure 3) and V3 
is the height of the potential barrier.  For very strong potential values, we approach the 
case discussed in the previous paragraph where the hydrogen atoms are essentially fixed.  
In a one-dimensional picture such as this, there are three types of motion.  The first type 
of motion is a periodic oscillation within the potential well known as a libration.  Another 
has to do with the pocket states.  Decreasing the potential strength removes the 
degeneracy of the equivalent pocket states, thus splitting the energy levels so that 
transitions between the pocket states now involves a measurable energy transfer.  This 
phenomenon is known as tunnel splitting.  The magnitudes of transitions between 
librational energy levels are on the order of 10 meV whereas those for tunnel splitting can 
vary between <1 to 100 µeV, at least for splitting of the ground librational state.  The 
final type of motion is jump diffusion of the methyl group between the three equivalent 
orientations.  In the single-particle interpretation of this motion, the particle has enough 
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thermal energy to hop over the potential barrier into an adjacent minimum.  This is a 
random motion and manifests itself in the neutron spectrum as a quasielastic peak. 
 
The usual starting point for an analysis of the quantum mechanics of the methyl groups is 
the time-independent Schrödinger equation, HΨ = EΨ.  In one dimension the 
Hamiltonian for a rotating methyl group is expressed as 
 

( )φ+
φ∂
∂

−= V
I2

H 2

22=  (6) 

 

where I = 5.3 × 10-47 kg m2 for CH3 [3] and ( ) ( )φ−=φ 3cos1
2

V
V 3 .  Solution of equation 

(6) can be carried out numerically using the basis functions for free rotors (V3 =  0),  
 

( ) ( )φ=φψ iJexpAJJ . (7)  
 
In the case when the potential is zero, the energy levels are given simply by  

 

…= ,2,1,0J,
I2
JE

22

J ±±==  (8) 

 
Numerical evaluation of Hamiltonian (6) with the basis functions (7) results in the energy 
levels depicted in figure 4.  Those of you who are interested can find the details of the 
calculation of the energy levels for the rotor in a three-fold potential in appendix A. 

 
Figure 4  Energy levels of the rigid rotor as a function of potential strength.  The free rotor quantum 
numbers are listed as well. 
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There are a number of notable features in figure 4.  First the energy levels at very small 
values of V3 are spaced according to the free-rotor values, given by equation (8).  As the 
strength of the potential increases, some of the branches split apart such as the J=3 and 
J=6 levels.  At high values of V3, some of the separate free-rotor energy levels are merged 
while others are appearing to merge.  In particular the J=0 and J=1 levels appear to merge 
together while the J=3 branch has split and its lower branch seems to merge with the J=2 
level.  At very high values of V3 (higher than those displayed in figure 4) many such 
mergers take place for the higher J levels.  
 
 
The ground state tunneling transition is designated as the transition between the J=0 and 
J=1 states.  The energy for such a transition (the difference in energy between the two 
levels) is displayed in figure 5 for a broad range of potential strengths.  The inset 
illustrates the tunneling transition energy over a smaller potential strength range. 
 
 

Figure 5 Energy for the J = 0→1 transition.  Inset is a semilog plot illustrating the approximate exponential 
dependence of the transition energy with potential. 
  
 
Data Analysis 
 
Take a look at some of the low temperature spectra.  There are a number of features in 
the data.  The central peak is the elastic scattering from the sample.  The two satellite 
peaks which constitute the inelastic scattering are the tunneling peaks. 
 
Q: Do the intensities of the inelastic peaks satisfy detailed balance?  Is this system 
necessarily in thermal equilibrium? 
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The model for tunneling of a methyl group in this type of potential has been worked out 
[4].  The details are messy and involve calculations of the transitions between the 
different eigenstates, but the main result is that the intrinsic lineshape is given by 
 

( ) ( ) ( ) ( )( ) ( ) ( )[ ]

( ) ( )
9

3Qrj45
QA

EEEE
2

QA1
EQAE,QS

0
0

tt
0

0

+
=

+δ+−δ
−

+δ=
, (9) 

 
where r is the radius of the methyl group, Q is the wavevector transfer to the sample, Et is 
the magnitude of the tunneling energy, and A0(Q) is the elastic incoherent structure factor 
(EISF).  Note that the lineshape involves three Dirac delta functions in energy, denoted 
by δ(E).  The measured spectrum will be broadened by the instrumental resolution, even 
at the lowest temperature.  See Appendix B for a discussion of the effects of instrumental 
resolution. 
 
The EISF for a tunneling methyl group is shown in figure 6.  In order to extract 
quantitative information from the data, we must fit equation 9, convolved with the 
instrumental resolution function, to the data. 
 

 
Figure 6 Elastic incoherent structure factor for a tunneling methyl group. 

 
 
Q: What is your estimate of V3 based on your low temperature data and the model 
we have selected? 
 
Q: Does the EISF for the tunneling methyl group match the theoretical model in 
equation 9?  If so, what is your estimate of the radius of the methyl group based on your 
fits? 
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The effects of deuteration have been studied with this system as well [5].  Since the 
nuclei in the methyl group are now composed of a proton and neutron, we would expect 
the moment of inertia of the rotor to be doubled.  The calculation shown in figure 5 has 
been repeated with such a modification to the moment of inertia and the transition from 
the J=0→1 states is displayed over a similar range in figure 7.   
 
 Q: If we were to measure CD3I rather than CH3I, do you think that we’d be able to 
observe the tunnel splitting with this spectrometer?  Assume that the potential strength 
does not change from your estimate in the previous question. 
 
 
 

 
 
Figure 7  Potential strength dependence of the one-dimensional rigid rotor CD3I and CH3I for the J = 0→1 
transition. 
 
As our backscattering measurement proceeds, we will be collecting tunneling spectra at a 
number of different temperatures to see the temperature dependence of the peak 
positions.  As we collect this data we will update a plot of the temperature dependence of 
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The temperature dependence of the tunnel peak positions and tunnel peak widths can 
provide additional information on the solid methyl iodide system.  An empirical model of 
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where Et(T) is the tunneling energy at temperature T, Ec is the phonon energy in the 
Einstein approximation, Es is related to the librational energy, and Ac is related to the 
coupling of the phonons to the methyl rotors. 
 
Q: What kind of values can you extract from fitting equation 10 to your peak position 
data? 
 
Q: Based on the barrier height you extracted from the low temperature tunnel 
spectra, estimate the first librational transition. 
 
Q: How does this prediction compare with your extracted value of  Es from your fit 
of equation 10 to the temperature dependent peak positions? 
 
The widths of the tunnel peak positions also seem to change with temperature.  A simple 
first approximation of this behavior is given by an Arrhenius law which represents a 
thermally-activated process.  Fit the intrinsic linewidths to an Arrhenius law and extract 
the activation energy. 
 
Q: What is the activation energy based on your fits of the Arrhenius law to the 
linewidths?  What does this activation energy represent in terms of our barrier model? 
 
Overnight we will measure a number of temperatures above which you can no longer see 
any obvious tunneling peaks.  The data appears quasi-elastic and this type of data can 
often be fit with a resolution-broadened elastic peak plus a resolution-broadened 
Lorentzian lineshape.   
 

( ) ( ) ( ) ( )( )
2200

E
1QA1EQAE,QS

Γ+π
Γ
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This model is indicative of a particle undergoing a random reorientation (i.e. hopping) 
among a small number of equivalent sites.  This transition from quantum rotational 
tunneling to random hopping among three equivalent sites implies a particular EISF 
which we can compare to that extracted from our data.  For a three-fold jump model on a 
circle, the EISF is given by [6] 
 

( ) ( )( )3Qrj1
3
1QA 00 += . (12) 

 
In addition to having a well-defined EISF, the width of the Lorentzian component of the 
fit model should be approximately constant with wavevector transfer, Q. 
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Q: Does the EISF for the quasielastic scattering at these higher temperatures match 
the theoretical model of equation 12?  Are the intrinsic linewidths of the Lorentzian 
component approximately constant over the Q-range probed? 
 
Q: The widths of the quasielastic scattering (the intrinsic width of the Lorentzian) 
also changes with temperature.  Extract an activation energy from these widths.  What 
does this activation energy represent in terms of our barrier model? 
 
The last measurement we perform for this experiment is that of the librational density of 
states for the CH3I. 
 
Q: How does the librational transition as measured on FANS compare with your 
prediction based on the tunnel spectra? 
 

 
References 

 
 [1].  Squires, G.L.  Introduction to the Theory of Thermal Neutron Scattering ( 

Cambridge Unversity Press,  Cambridge, London, New York, Melbourne, 
1978). 

 [2].  Prager, M. & Heidemann, A.  Chem.Rev.  97, 2933-2966 (1997). 

 [3].  Horsewill, A.J.  Spectrochimica Acta  48A, 379-403 (1992). 

[4].  Press, W.  Single-Particle Rotations in Molecular Crystals ( Springer-Verlag,  
Berlin Heidelberg New York, 1981).  

[5].  Prager, M., Stanislawski, J. & Hausler, W.  J.Chem.Phys  86, 2563-2575 (1987). 

[6].  Bée, M.,  Quasielastic Neutron Scattering: Principles and Applications in Solid 
State Chemistry, Biology, and Materials Science (IOP Publishing, 
Philadelphia, 1988). 

 



 14 

Appendix A 

Matrix Elements of the 1-D Rigid Rotor in the Three-Fold Potential 
 

The Hamiltonian for the rigid rotor in the three-fold potential is given by equation (6) 
repeated below 
 

( )φ+
φ∂
∂

−= V
I2

H 2

22=  (A1) 

 
where  

( ) ( )φ−=φ 3cos1
2

V
V 3 . (A2) 

 
The matrix elements can be calculated using the free-rotor basis eigenfunctions 
 

( ) ( ) …,2,1,0n,inexp
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The Hamiltonian (A1) can be decomposed into two parts, mn

0
mnmn VHH += , where the 

elements 0
mnH  are related to the zero-potential energy levels as 
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0
mn I2

nH δ=
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which can be found via the eigenvalue equation for the free rotor Schrödinger equation 
 

 ( ) ( )φψ=φψ
φ∂
∂

− nnn2

22

E
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with the eigenfunctions given by (A3) and solving for En.  The elements of the potential 
matrix, Vmn, are found by calculating the following integral: 
 

( ) ( ) ( )φψφ−φψφ= ∫
π

n
3

2

0

*
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2
V
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Explicit calculation of (A6) and including the zero-potential energy matrix elements (A4) 
results in the final expression for the matrix elements of the total Hamiltonian: 
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where δn,k is the kronecker delta, 




≠
=

=δ
kn,0
kn,1

k,n . 

The energy eigenvalues shown in figure 3 were found numerically by generating the 
matrix, Hmn, for some large number N (we used 41 which gives sufficient accuracy) for a 
variety of values of V3 and calculating the eigenvalues of Hmn. 
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Appendix B 
Instrumental Resolution 

 
In an experiment with an ideal instrument we could measure the sample's scattering 
response directly.  However real neutron spectrometers (and all measurement apparatus 
in general) have a finite resolution which tends to distort the measured distribution [B1].  
The origin of the resolution distortion is due to many instrument-specific factors which 
lead to an accumulation of (hopefully small!) uncertainties.  These uncertainties have the 
general effect of blurring the overall response.   The effects of instrumental resolution 
often can be quantified in the instrumental resolution function.  Mathematically, the 
resolution function and the intrinsic scattering function are convolved to yield the 
measured response.  We present here an example of a convolution of two functions and 
the effects of the resolution width. 
 
In this example we assume that the resolution function, R(E), is a normalized gaussian 
centered at zero,  
 

( )

2E
2
1

2
e

2

1ER








σ
−

πσ
= , [B.1] 

 
and the intrinsic scattering function, S(E), is a triangle function centered at zero with a 
base, ∆, one unit wide (∆=1) and unit height, 
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where θ(E) is the unit step function. 
 
The measured response, I(E), is given by the convolution integral, 
 

( ) ( ) ( )
( ) ( )E~SE~ERE~d

ESEREI

∫ −=

⊗=
 , [B.3] 

 
where ⊗  denotes the convolution operation and the integral is over all values of E~ .  
When the gaussian width parameter σ is small, the gaussian approaches a delta function, 
and the result of the convolution looks very similar to the original triangle function.  
Figure B.1 shows this result for a full-width at half maximum (FWHM) of 0.01.  When 
the FWHM is larger, the resulting convolution product looks more distorted and blurred.  
Figure B.2 shows such a case when the FWHM is 0.5. 
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Figure B.1  Result of the convolution of the triangle function with a gaussian FWHM of 0.01. 
 

 
 
 

Figure B.2 Result of the convolution of the triangle function with a gaussian FWHM of  0.5. 
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instrumental resolution function is essential for detailed lineshape analysis.  Often this 
can be measured using an elastic scatterer. 
 
Q:  How might you use your sample, rather than a vanadium standard (an elastic 
scatterer) for instance, to measure the instrumental resolution function? 
 
In many cases, the instrumental resolution can be measured directly and used in the 
model fitting procedure via the convolution product.  If we measure the scattering 
function from a purely elastic scatterer (ignoring the angular or Q-dependence for now) 
then the measured quantity is directly proportional to the resolution function.  In 
particular, the elastic scattering function can be represented by a Dirac delta function with 
area A:  SEL(E) = Aδ(E).  When convolved with the resolution function, we get the 
measured response: 
 

( ) ( ) ( )
( )EAR

EREAEImeas
=

⊗δ=
. [B.4] 

 
Note that we must normalize the resolution function so that it has unit area.  This is 
necessary so that we can extract the integrated intensity of the intrinsic lineshape, S(E), 
from the fit to the model.  Since the integrated intensity of the convolution product of two 
functions is equal to the product of the areas of the two functions then, if one of the areas 
is unity (as in the case of a normalized resolution function), the other must be the total 
area of the measured intensity. 
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Appendix C 
Instrument Characteristics for the High Flux Backscattering Spectrometer 

(http://www.ncnr.nist.gov/instruments/hfbs) 
 

Si (111) analyzers covering 20% of 4π steradians 
Si (111) monochromator 52 cm wide × 28 cm tall 
λ = 6.27 Å 
Ef =2.08 meV 
vn = 630 m/s 
16 3He detectors covering 14o < 2θ < 121o 
 
Dynamic range: 
 
-36 µeV < ∆E < 36 µeV 
0.25 Å-1 < QEL < 1.75 Å-1  
τ ≈ 0.1 – 1 ns 
 
Instrumental resolution: 
 
δE < 1 µeV (FWHM) 
δQ = 0.1 Å-1- 0.2 Å-1 
 
Flux at sample: 
 
Φ ≈ 1.4 × 105 n/cm2/s 
 
Beam size at sample: 
 
3 cm × 3 cm 
 
Signal to noise: 
 
350:1 for vanadium foil (10% scatterer) 
 
Sample environment: 
 
Furnace (300 K – 1700 K) 
Closed cycle refrigerator (8 K – 310 K) 
Closed cycle refrigerator (30 K – 600 K) 
Orange cryostat (1.5 K – 300 K) 
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Figure C.1 Schematic of HFBS 
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Appendix D 
Instrument Characteristics for the Filter Analyzer Neutron Spectrometer 

(http://www.ncnr.nist.gov/instruments/fans) 
 

 
• Minimum sample mass 10 mg for a hydrocarbon  

sample 
• Detector coverage: 9% of 4π steradians 
• Ef =1.2 meV 
• 48 3He detectors covering 17.9o < 2θ < 118o 
 
Dynamic range: 
 
10 meV < ∆E < 250 meV 
 
Instrumental resolution: 
 
δE ≈ 1.1 meV at low energy transfer 
 
Flux at sample: 
 
Φ ≈ 107 n/cm2/s 
 
Beam size at sample: 
 
2.5 cm × 6.3 cm 
 
Sample environment: 
 
Furnace (300 K – 1700 K) 
Closed cycle refrigerator (8 K – 310 K) 
Closed cycle refrigerator (30 K – 600 K) 
Orange cryostat (1.5 K – 300 K) 
 
 

 
Figure D.1 Phase space coverage of FANS 
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Figure D.2  Schematic illustration of operating principle of FANS
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Appendix E 
Effects of the Sample Geometry on Self Shielding and Multiple Scattering 

 
One must consider a number of issues when determining an appropriate sample 
geometry.  A naïve philosophy in designing a sample geometry is to make the sample as 
big as possible in order to obtain as many scattering events in the shortest possible time.  
Unfortunately optimization of the experiment is not as simple as this.  Sample design 
involves a careful consideration of the composition of the sample in terms of its 
scattering and absorption cross-sections. 
 
In an inverse geometry spectrometer like HFBS where the beam passes through the 
sample twice one must consider self-shielding effects which reduce the intensity received 
at the detectors via absorption.  In general absorption in the sample is proportional to the 
neutron wavelength.  On a backscattering spectrometer using Si(111), Ei= 2.08 meV, λ= 
6.27 Å, which results in the cross section for absorption being 3.5 times larger than for 
thermal neutrons with 1.8 Å.   
 
In order to understand the extent to which you have to correct for multiple scattering/self-
shielding it is important to know how strong a scatterer/absorber your sample is.  The 
transmission in the forward direction (2θ = 0o) is often calculated and expressed in terms 
of a percentage of the incident beam that is scattered/absorbed.  For instance, a flat plate 
sample with total scattering cross-section, σtot = σinc+σcoh, and absorption cross-section, 
σabs, will have a scattering and absorption determined by 
 

( )







θ−π

µ
−−=

2sin
d

exp1scattering s          (flat plate) (E1) 

( )







θ−π

µ
−−=

2sin
d

exp1absorption abs        (flat plate) (E2) 

 
 
where 2θ is the angle of orientation of the slab with respect to the incident beam 
direction, d is the thickness of the slab sample, and µ is the scattering coefficient (inverse 
scattering length in cm-1) determined by  
 

µs = NAσtotρ/A (E3) 
µabs = NAσabsρ/A (E4) 

 
 
where NA is Avogadro’s number (6.022 × 1023 mole-1), ρ is the mass density of the 
sample material (in g/cc), and A is the molecular weight of the sample in g/mol.  On the 
other hand an annular sample cell has a scattering/absorption in the forward direction 
determined by 
 

( )dexp1scattering sπµ−−=          (annular cell) (E5) 
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( )dexp1absorption absπµ−−=          (annular cell) (E6) 
 

 
where the inverse scattering.absorption lengths are calculated as described above (eqs. E3 
and E4) and d is the wall thickness of the annular sample.  Equations (E5) and (E6) are 
good approximations for the cases where exp(-πµd) > 80%. 
 
We illustrate the self-shielding corrections for a vanadium sample (σs(1.8 Å) = 5.10 barn 
and σabs(1.8 Å) = 5.08 barn [E1]) for two different geometries: a flat plate and an annular 
sample.  The intensity in the detectors is very sensitive to the thickness of the sample as 
well as its geometry.  If we assume these two geometries for the same amount of 
scattering (5%, 10%, and 20% scatterers respectively as calculated via (E1) and (E5)) and 
assume that the samples are completely illuminated by the incident beam then we obtain 
the results displayed in figure E.1.  The corrected intensity is obtained using Icorr(2θ,E) = 
Iobs(2θ,E)/Assc where Iobs(2θ,E) is the observed intensity.  It is quite clear that there is a 
much stronger angle dependence for the correction factor of the slab geometry whereas 
the corrections are much less for the annular cell.    Furthermore, an evaluation of the 
correction factor is impossible near the orientation angle, 130o in the present example, for 
the slab geometry.  Therefore it is advantageous to use an annular geometry for 
backscattering.  Note that, because the beam goes through the sample twice on HFBS, the 
sample transmission due to the presence of absorption must be squared. 
 

 
Figure E.1 Scattering angle dependence of the self-shielding correction factor for (a) flat plate whose 
normal is oriented 130o with respect to incident beam direction and (b) an annular sample geometry. 
 
When one increases the thickness of the sample for a system with a medium absorption 
cross-section the intensity will not significantly increase but the effects of multiple 
scattering will certainly be enhanced.  Corrections for multiple scattering are not trivial 
and, for many systems in which the scattering function is not known a priori, may not be 
possible at all. 
 
Figure E.2 illustrates the effects that multiple scattering can have on a system, in this case 
viscous glycerol.  This sample was measured on the IN10 backscattering spectrometer at 
the ILL at a temperature where the structural relaxation (viscous flow) is on the time 
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scale of the instrument (0.1–1 ns).  There is a clear broadening of the lineshape with 
increasing Q (FWHM ~ Q2) due to the dynamics of the system.  However at Q = 0.19 Å-1 
structural relaxation cannot be resolved because its too slow at this small Q.  The 
effective broadening in the wings is entirely due to multiple scattering. 
 
 

 
 
Figure E.2 Scattering intensity of viscous glycerol taken on the IN10 backscattering spectrometer 
illustrating the effects of multiple scattering on S(Q,E).  Solid line represents the instrumental resolution, 
open symbols are data taken at Q=1.4 Å-1, and the closed symbols are data taken at Q=0.19 Å-1 [E2]. 
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